首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

几何 >> 度量几何
Questions in category: 度量几何 (Metric Geometry).

[Def]度量空间之间映射的缩放量度(dilatation)

Posted by haifeng on 2012-10-17 11:13:09 last update 2012-10-17 12:59:07 | Answers (1)


设 $X,Y$ 是两个度量空间, 映射 $f:X\rightarrow Y$ 的 dilatation (缩放量度)定义为

\[
\text{dil}(f):=\sup_{x_1,x_2\in X, x_1\neq x_2}\frac{d_Y(f(x_1),f(x_2))}{d_X(x_1,x_2)}
\]

这里 $d_X,d_Y$ 分别指度量空间 $X,Y$ 上的距离函数. 显然 $\text{dil(f)}\in[0,+\infty]$.

为方便, 定义 $X\times X$ 上的函数 $\text{dil}_f$ 为:

\[
\text{dil}_f(x_1,x_2):=\frac{d_Y(f(x_1),f(x_2))}{d_X(x_1,x_2)},
\]

于是,

\[
\text{dil}(f)=\sup_{x_1,x_2\in X, x_1\neq x_2}\text{dil}_f(x_1,x_2).
\]


也可以定义 $f$ 在一点处的局部缩放量度(local dilatation):

\[
\begin{split}
\text{dil}_x(f):=&\lim_{\varepsilon\rightarrow 0}\text{dil}(f|_{B(x,\varepsilon)})\\
=&\lim_{\varepsilon\rightarrow 0}\sup_{s,t\in B(x,\varepsilon),s\neq t}\frac{d_Y(f(s),f(t))}{d_X(s,t)}.
\end{split}
\]


映射 $f$ 称为

  • Lipschitz 的, 如果 $\text{dil}(f) < +\infty$;
  • $\lambda$-Lipschitz 的, 如果 $\text{dil}(f)\leqslant\lambda$.

此时称 $\text{dil}(f)$ 为 $f$ 的 Lipschitz 常数. 也记为 $\text{Lip}(f)$.


易见, Lipschitz 常数等价于下面的定义:

\[
\text{Lip}(f):=\sup_{B\subset X}\frac{\text{diam}_Y(f(B))}{\text{diam}_X(B)}.
\]

其中 $\text{diam}_Y()$ 是指在度量空间 $Y$ 中的直径函数. 上确界是对于取遍 $X$ 中的有界集而言的.

Question: 证明上面两种定义是等价的. (证明见 Answers)


References:

M. Gromov,

1. Metric structures for Riemannian and Non-Riemannian Spaces.
2. Hilbert Volume in Metric Spaces, Part 1, May 4, 2011. [pdf]